Multiplatform modular quantum computers since 2011

Our co-founder and CEO Prof. Dr. Enrique (Kike) Solano has a long track record in the quantum computing space. Since more than a decade, with his first pioneering publications having been published in 2011, he and his global collaborators have been developing the scientific foundation behind our key technology concepts – modular, multiplatform, co-designed quantum computers.

Recent publications and patent applications

Coming soon…

Selected historic publications

This list is a selection of Kike Solano’s research articles containing both theory and experimental works in modular and codesign quantum simulation and quantum computation involving Embedding Quantum Simulators (EQS), Digital-Analog Quantum Simulation (DAQS), Digital-Analog Quantum Computing (DAQC), Digitized-Adiabatic Quantum Computing, as well as the first works on Modular Quantum Simulation and Modular Quantum Computing in their evolution along the past decade. It also show-cases our strong network of collaborators which reaches to several universities and many leading companies.

Digital-analog mapping of spin models on a trapped-ion architecture (DAQS):  I. Arrazola, J. S. Pedernales, L. Lamata, and E. Solano, “Digital-Analog Quantum Simulation of Spin Models in Trapped Ions”, Sci. Rep. 6, 30534 (2016). Link: [1602.06248] Digital-Analog Quantum Simulation of Spin Models in Trapped Ions (

These original ideas for trapped ions inspired us to go ahead with further models in superconducting circuits and other quantum platforms.

Digital-analog quantum computation of scattering in quantum electodynamics in trapped ions (CDQS):  X. Zhang, K. Zhang, Y. Shen, J. Zhang, M.-H. Yung, J. Casanova, J. S. Pedernales, L. Lamata, E. Solano, and K. Kim, “Fermion-antifermion scattering via boson exchange in a trapped ion”, Nat. Comm. 9, 195 (2018). Link: [1611.00099] Fermion-antifermion scattering via boson exchange in a trapped ion (

An impressive implementation in the lab of our proposals on CDQS