Application-specific quantum computing since 2011

Our co-founder and Chief Scientist Prof. Dr. Enrique (Kike) Solano has a long track record in the quantum computing space. Since more than a decade, with his first pioneering publications having been published in 2011, he and his global collaborators have been developing the scientific foundation behind our key technology concepts.

Recent publications

Coming soon…

Selected historic publications

This list is a selection of Kike Solano’s research articles containing both theory and experimental works in modular and codesign quantum simulation and quantum computation involving Embedding Quantum Simulators (EQS), Digital-Analog Quantum Simulation (DAQS), Digital-Analog Quantum Computing (DAQC), Digitized-Adiabatic Quantum Computing, as well as the first works on Modular Quantum Simulation and Modular Quantum Computing in their evolution along the past decade. It also show-cases our strong network of collaborators which reaches to several universities and many leading companies.

Digital-analog mapping of spin models on a trapped-ion architecture (DAQS):  I. Arrazola, J. S. Pedernales, L. Lamata, and E. Solano, “Digital-Analog Quantum Simulation of Spin Models in Trapped Ions”, Sci. Rep. 6, 30534 (2016). Link: [1602.06248] Digital-Analog Quantum Simulation of Spin Models in Trapped Ions (

These original ideas for trapped ions inspired us to go ahead with further models in superconducting circuits and other quantum platforms.

Digital-analog quantum simulation of interacting fermions via exchange of bosons in quantum field theories (DAQS):  L. García-Álvarez, J. Casanova, A. Mezzacapo, I. L. Egusquiza, L. Lamata, G. Romero, and E. Solano, “Fermion-Fermion Scattering in Quantum Field Theory with superconducting circuits”, Phys. Rev. Lett. 114, 070502 (2015). Link: [1404.2868] Fermion-Fermion Scattering in Quantum Field Theory with Superconducting Circuits (

In this work, we were able to describe a modular architecture for quantum computation of scattering processes between fermions, like electrons, via exchange of a continuum of bosonic modes, like photons in open air. Our proposal shows that you may reach quantum advantage with rather few quantum elements (qubits, cavities, open transmission lines), while the proposal of John Preskill and others, published in Science 2011 requires millions of qubits.