science

Implementing quantum Fourier transform via digital-analog methods (DAQC)

A. Martin, L. Lamata, E. Solano, and M. Sanz, “Digital-analog quantum algorithm for the quantum Fourier transform”, Phys. Rev. Research 2, 013012 (2020). A key example of the power of DAQC applied to the quantum Fourier transform algorithm, which is the basis of quantum phase estimation article, which is at the basis of Shor algorithm, […]

Enhancing connectivity through digital-analog approach (DAQC)

A. Galicia, B. Ramon, E. Solano, and M. Sanz, “Enhanced connectivity of quantum hardware with digital-analog control”,  arXiv:1912.09331, accepted in Phys. Rev. Research (2020). Another key paper on the unpredictable flexibility and power of DAQC methods. Link

Digital-analog quantum simulation of quantum approximate optimization algorithm (DAQS)

D. Headley, T. Müller, A. Martin, E. Solano, M. Sanz, and F. K. Wilhelm, “Approximating the Quantum Approximate Optimisation Algorithm”, arXiv:2002.12215 (2020). A masterpiece of Co-Design Quantum Computers developed with Mercedes Benz researchers, Saarbrücken researchers that coordinate the Quantum Computing European consortium, and our QUTIS Center in Bilbao, Spain, where most of these ideas were […]

Pioneering Connection between Active Learning and Quantum Information

Y.-C. Ding, J.-D. Martín-Guerrero, M. Sanz, R. Magdalena-Benedicto, X. Chen, and E. Solano, “Retrieving Quantum Information with Active Learning”, Phys. Rev. Lett. 124, 140504 (2020). Link

Pioneering Quantum Computing Realization of Models of Financial Crashes

Y.-C. Ding, L. Lamata, J.-D. Martín-Guerrero, E. Lisazo, S. Mugel, R. Orús, E. Solano, and M. Sanz, “Towards Prediction of Financial Crashes with a D-Wave Quantum Computer”, arXiv:1904.05808 (2020). Link

Pioneering Quantum Computing Implementation of Pricing Financial Derivatives

A. Martin, B. Candelas, A. Rodríguez-Rozas, J.-D. Martín-Guerrero, X. Chen, L. Lamata, R. Orús, E. Solano, and M. Sanz, “Towards Pricing Financial Derivatives with an IBM Quantum Computer”, arXiv:1904.0583 (2020). Link

Reaching quantum supremacy via co-design approach (CDQC)

F. Hu, L. Lamata, C. Wang, X. Chen, E. Solano, and M. Sanz, “Quantum Supremacy in Cryptography with a Low-Connectivity Quantum Annealer”, arXiv:1906.08140 (2019). A prove that we can reach quantum supremacy and quantum advantage with variants, some of them even simpler, of D-Wave architectures. A key result for cryptography. Link

Digital-analog quantum computation of scattering in quantum electodynamics in trapped ions (CDQS)

X. Zhang, K. Zhang, Y. Shen, J. Zhang, M.-H. Yung, J. Casanova, J. S. Pedernales, L. Lamata, E. Solano, and K. Kim, “Fermion-antifermion scattering via boson exchange in a trapped ion”, Nat. Comm. 9, 195 (2018). An impressive implementation in the lab of our proposals on CDQS Link

Review article on digital-analog quantum simulations (DAQS)

Lucas Lamata, Adrián Parra-Rodriguez, Mikel Sanz, and Enrique Solano, “Digital-Analog Quantum Simulations with Superconducting Circuits”, Advances in Physics X: 3, 1457981 (2018). A review article on what we had achieved up to 2018 on DAQS proposals. Link

Pioneering proposal for a nonlinear non-Markovian quantum element (DAQS)

P. Pfeiffer, I. L. Egusquiza, M. Di Ventra, M. Sanz, and E. Solano, “Quantum Memristors”, Sci. Rep. 6, 29507 (2016).  Here, we invented the Quantum Memristor, as a new fundamental quantum device in superconducting circuits for opening the field of Neuromorphic Quantum Computing. Link