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We demonstrate experimentally that the bias-field digitized counterdiabatic quantum optimization (BF-
DCQO) algorithm on IBM’s 156-qubit devices can outperform simulated annealing (SA) and CPLEX in time-
to-approximate solutions for specific higher-order unconstrained binary optimization (HUBO) problems. We
suitably select problem instances that are challenging for classical methods, running in fractions of minutes
even with multicore processors. On the other hand, our counterdiabatic quantum algorithms obtain similar or
better results in at most a few seconds on quantum hardware, achieving runtime quantum advantage. Our anal-
ysis reveals that the performance improvement becomes increasingly evident as the system size grows. Given
the rapid progress in quantum hardware, we expect that this improvement will become even more pronounced,
potentially leading to a quantum advantage of several orders of magnitude. Our results indicate that avail-
able digital quantum processors, when combined with specific-purpose quantum algorithms, exhibit a runtime
quantum advantage even in the absence of quantum error correction.

I. INTRODUCTION

Combinatorial optimization problems arise in diverse do-
mains such as logistics, manufacturing, finance and chemistry,
where finding optimal or near-optimal solutions is computa-
tionally intensive. In the worst case, the runtime on classical
hardware grows exponentially with problem size. These prob-
lems are commonly tackled with both domain-specific solvers
and general-purpose algorithms such as simulated annealing
(SA) [1], CPLEX [2], and Gurobi [3]. However, these meth-
ods struggle with increasingly complex instances. Quantum
computing has therefore emerged as a promising alternative
for advancing the state of the art in optimization. Early con-
nections between combinatorial optimization and disordered
systems such as spin glasses [4] inspired the application of
statistical physics techniques, particularly the mapping of op-
timal solutions to ground states of Ising models [5]. Build-
ing on this framework, quantum algorithms such as adiabatic
quantum optimization (AQO) [6] and the quantum approx-
imate optimization algorithm (QAOA) [7], provide new ap-
proaches to these demanding problems [8].

As quantum hardware improves, recent experiments sug-
gest that quantum devices may soon outperform classical
solvers on specific families of optimization problems. A va-
riety of quantum-enhanced strategies have been proposed to
accelerate optimization, providing both theoretical speedups
and encouraging empirical results [9–16].

One particularly complex class of problems is higher-order
unconstrained binary optimization (HUBO). Proof-of-concept
implementations on current quantum devices have used AQO
and QAOA [17–24]. However, high noise levels in these
devices still limit scalability. To overcome this challenge,
researchers have increasingly adopted counterdiabatic (CD)
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driving [25–31]. CD techniques aim to suppress non-adiabatic
transitions, enabling more accurate and efficient quantum evo-
lution toward optimal solutions.

In this work, we experimentally demonstrate that the re-
cently proposed bias-field digitized counterdiabatic quantum
optimization (BF-DCQO) algorithm [32–34], when executed
on IBM quantum hardware [35], can potentially yield faster
approximate solutions than classical solvers for specific prob-
lem classes. Given hardware constraints, including restricted
qubit connectivity and finite coherence times, we develop an
instance-generation strategy that enables efficient implemen-
tation of relatively dense HUBO instances on current quantum
hardware. Guided by our experimental findings, we identify
signatures of a runtime advantage using BF-DCQO. Particu-
larly, we benchmark against SA and CPLEX using up to 48
cores and 10 threads, respectively.

The remainder of this article is organized as follows. Sec-
tion II describes the procedure for generating challenging
HUBO instances and classifies them into two distinct types.
Section III details the benchmarking methodology for eval-
uating solver performance. Section IV presents the experi-
mental implementation of BF-DCQO on IBM hardware and
analyzes its performance relative to classical solvers. Finally,
Section V summarizes our conclusions, and the Appendices
provide additional remarks and extended results.

II. HIGHER-ORDER BINARY OPTIMIZATION

Many academic and industrial optimization problems can
be formulated as HUBO problems, characterized by a cost
function of the form

F(x) =
d∑

k=1

∑
(i1,...,ik)∈Gk

Ti1···ik xi1 · · · xik , (1)

where xi ∈ {0, 1}, d is the maximum interaction order, and the
coupling coefficients Ti1···ik are sampled from an appropriate
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probability distribution. Here, G =
(
V, {Gk}

d
k=1

)
is a hyper-

graph with V the set of vertices and Gk the set of k-vertex
hyperedges. The complexity of a HUBO instance is governed
by four factors: the number of variables N, the interaction co-
efficients Ti1···ik [36], the maximum interaction order d, and the
density imposed by the hypergraph connectivity.

We consider systems up to N = 156 qubits on IBM’s su-
perconducting quantum processors [35]. We restrict d = 3
to facilitate the experimental demonstrations. After mapping
each binary variable xi to a spin variable via xi =

1−σz
i

2 , Eq. (1)
takes the form of a p-spin glass Hamiltonian [37],

Hp =

N∑
i=1

hi σ
z
i+

∑
(m,n)∈G2

Jmn σ
z
mσ

z
n+

∑
(p,q,r)∈G3

Kpqr σ
z
pσ

z
qσ

z
r, (2)

whose ground state is the optimal solution of F(x). In the
following sections, we describe procedures to generate these
graphs and coefficients to construct classically hard instances
that embed efficiently in quantum hardware.

A. Instance generation

We generate classically hard instances by jointly construct-
ing the interaction graphs and selecting coupling coefficients.
We start from empty graphs G2 = ∅ and G3 = ∅ and
an initial coupling map C0 that encodes the hardware con-
nectivity. Using graph-coloring [38], we identify all sets
of nearest-neighbor two- and three-body terms that can be
applied in parallel on C0. We denote these collections as
P2q =

{
P(1)

2q , · · · , P
(M2)
2q

}
and P3q =

{
P(1)

3q , · · · , P
(M3)
3q

}
, where

M2 (M3) is the maximum number of two- (three-) body sets.
Additionally, we define the integers S 2q, (S 3q) as the number
of sets from P2q (P3q) to include in G2q (G3q), i.e. G2q ←

G2q ∪
{
P(l)

2q

}
l=1,··· ,S 2q

. Similarly, G3q ← G3q ∪
{
P(l)

3q

}
l=1,··· ,S 3q

.

Next, we use the first two-body set P(1)
2 as a swap layer, which

permutes the qubit positions in C0 and yields an updated cou-
pling map C1. The process is iteratively repeated for n swap
layers applied to the first set of P2q, see Algorithm 1. For
all experiments, we choose C0 to be the 156-qubit heavy-
hexagonal lattice of IBM’s Heron architecture [39]. Figure 1
shows the total number of Hamiltonian terms (one-, two-, and
three-body interactions) as a function of S 2q and S 3q for n = 1.
As expected, increasing S 2q and S 3q raises the total interaction
count from roughly 300 to 800.

After generating the interaction sets, we sample coupling
coefficients from two heavy-tailed distributions: the Cauchy
distribution and a variant of the Pareto distribution. Heavy-
tailed distributions frequently produce large-magnitude coeffi-
cients, increasing the energy landscape’s ruggedness and mak-
ing the combinatorial optimization problem harder to solve.
Such heavy-tailed behavior is observed in real-world scenar-
ios involving financial modeling [40–42].

Cauchy distribution.—We draw the couplings from the
standard Cauchy distribution, namely Ti1···ik ∼ Cauchy(0, 1).

Algorithm 1 Instance layout generation strategy
Require: Number of Swap layers n; initial hardware coupling map

C0; function GraphColoring(C) that returns sets P2q and P3q of
two- and three-qubit interactions executable in parallel respec-
tively, given a coupling map C; function SwapRegister(C, I) that
swaps a set of pairs I in the coupling map C, and returns the
swapped coupling map.

1: Initialize G2q ← {∅} and G3q ← {∅}

2: Set C ← C0

3: for i = 1 to n do
4: (P2q, P3q)← GraphColoring(C)
5: Select S 2q subsets from P2q and append them to G2q

6: Select S 3q subsets from P3q and append them to G3q

7: if i < n then
8: C ← SwapRegister

(
C, P(1)

2q

)
9: end if

10: end for
11: return G2q,G3q
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FIG. 1. Number of two- and three-qubit interactions arranged as a
tuple, for all the possible values of S 2q and S 3q with n = 1 on a 156-
qubit heavy-hexagonal architecture.

This distribution is characterized by the density function

f (ξ) =
1

π
(
1 + ξ2) . (3)

Since its distribution has no finite moments at any order,
it is unsuitable for moment-based analysis. Nevertheless,
its heavy-tailed nature often produces outlier-prone behavior,
making it useful in robust statistics, signal processing, and
noise modeling [43, 44].

Pareto distribution.—We draw the couplings from a sym-
metrized Pareto distribution, Ti1···ik ∼ SymmetricPareto(1, α).
This distribution is characterized by the density function

f (ξ) =
(
α

ξα+1 + 1
)

(−1)y, (4)

where ξ ≥ 1, and y ∈ {0, 1} is a Bernoulli variable with
50% probability. The term α/ξα+1 corresponds to the standard
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FIG. 2. Number of instances where SA with nsweep = 20000 and
nruns = 100 yield a solution within a givenR for different system sizes
N between 80 and 156. The instances follow the Cauchy distribution
with n = 1, S 2q = 1 and S 3q = 4.

Pareto distribution. This construction results in a heavy-tailed
distribution centered at zero. For α = 2, the mean exists and is
finite, while the variance is undefined. This distribution pro-
duces occasional large-magnitude coupling coefficients, in-
creasing the ruggedness and complexity of the optimization
landscape.

III. SA, CPLEX, AND BF-DCQO

To benchmark the performance of BF-DCQO, we con-
sider two solvers: a heuristic classical solver based on the
Metropolis-Hastings criterion [45, 46], SA [1]; an exact com-
mercial solver, IBM CPLEX [2]. In this section, we provide a
detailed description of the usage and implementation of each
solver in detail.

A. Simulated Annealing (SA)

SA is a heuristic optimization technique inspired by the
physical annealing process. The algorithm iteratively explores
the solution space, accepting both energy-lowering and, with
a certain probability, energy-increasing moves to escape lo-
cal minima. As the algorithm progresses, the acceptance of
higher energy moves decreases, guiding convergence toward
near-optimal solutions.

In this work, we apply SA directly from the HUBO for-
mulation of Eq. 2. We initialize all spins randomly and inde-
pendently compute the upper bound of the maximum energy
change from any spin-flip i, namely ∆Emax = maxi ∆Emax

i .
This sets the initial temperature, Tinit = ∆Emax, and we choose
the final temperature as Tfinal = 0.01 Tinit. A geometric cool-
ing schedule is generated between these bounds, assigning
one temperature per sweep. Each SA run consists of nsweep
sweeps. In each sweep, we randomly permute the spin in-
dices and visit them in that order. For each spin, we com-
pute the exact energy change ∆E upon flipping and apply the
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FIG. 3. Maximum and mean TTS of CPLEX for 250 randomly gen-
erated instances as a function of the system size N. The instances fol-
low the symmetrized Pareto distribution with α = 2, n = 1, S 2q = 1,
and S 3q = 6.

Metropolis-Hastings criterion. After nsweep sweeps, we record
the lowest-energy configuration. We perform nruns indepen-
dent runs and return the best result. For all cases, SA is par-
allelized across all available CPU cores, see Table. I, to maxi-
mize computational efficiency (see Table I). Defining E as the
lowest-energy valued sample and EGS the most optimal so-
lution obtained using CPLEX, Figure 2 shows how many in-
stances out of 250 achieve an approximation ratio R = E/EGS
between 0.99 and 1.00 as a function of system size N ranging
from 80 to 156, and using nsweep = 20000 and nruns = 100.
For reference, the total runtime of SA is computed using the
expression TCPU = nsweep nruns · 0.6 · 10−5s, where 0.6 · 10−5s
denotes the time per sweep, obtained by extrapolating the av-
erage runtimes of zero-temperature SA across a range of 104

to 107 sweeps, see Appendix D.We find that smaller S 2q in-
creases problem difficulty (see Appendix B 2).

Based on this observation, we set S 2q = 1 and S 3q = 4
for our subsequent analysis. This choice generates compact
circuits while preserving problem difficulty for experimental
implementations. We sample the coupling coefficients from
a Cauchy distribution with values constrained to the range
[−7, 7]. As N grows, fewer instances reach high approxima-
tion ratios R, indicating increased problem hardness and mak-
ing it more difficult for SA to reach close-to-optimal solutions
(see Appendix B 2). Here, we also observed that CPLEX (de-
tailed in the next section) can solve these instances within a
few seconds on average. Therefore, we use CPLEX results as
the baseline for comparing SA and BF-DCQO.

B. CPLEX

CPLEX is a commercial solver owned by IBM that targets
mixed-integer linear and quadratic programming. It is widely
used in large-scale optimization and serves as a robust clas-
sical benchmark. All results were obtained using the soft-
ware specifications in Table I. To solve our HUBO problems
using CPLEX, we convert each instance to a mixed-integer
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TABLE I. Classical hardware and software specifications.

Processor AMD (KVM processor) (48 × 2.3 GHz)
RAM 123 GB

OS Debian GNU/Linux 12 (bookworm) (×64)
CPLEX [2] v22.1.2.0 C++ 11.4.0

programming problem. Several conversion methods are de-
scribed in Appendix A; we selected the method with the low-
est runtime on our generated instances.

In Figure 3, we measure the time to reach a provably opti-
mal solution, denominated as TTS, for CPLEX over 250 ran-
dom Pareto-distributed HUBO instances. We restricted to sys-
tem sizes N between 80 and 156 and fixed n = 1, S 2q = 1,
and S 3q = 6, which maximizes TTS, as described in Ap-
pendix B 1. For all the cases, we used a single CPU thread
and observed an exponential scaling of TTS with respect to N.
This exponential growth highlights the practical limits of clas-
sical solvers and motivates alternative approaches. We also
observe that for these instances, SA can find the optimal solu-
tion with a few thousand sweeps.

C. BF-DCQO

The digitized counterdiabatic quantum optimization
(DCQO) algorithm implements a digitized fast evolution
governed by a CD Hamiltonian Hcd, which is built from a
finite-time adiabatic path from a mixer Hamiltonian Hm to
the target Hamiltonian Hp. In BF-DCQO [32–34], the DCQO
algorithm (see Appendix C) is applied iteratively by biasing
Hm as

Hm =

N∑
i=1

hx
i σ

x
i +

N∑
i=1

hb
i σ

z
i , (5)

where the transverse fields hx
i are kept constant, and the longi-

tudinal “bias” fields hb
i are updated iteratively using the update

rule hb
i = ±⟨σ

z
i ⟩. This measurement-based feed-forward ap-

proach enables the preparation of progressively improved ini-
tial states at each iteration. Furthermore, we employ the first-
order nested commutator expansion of the adiabatic gauge po-
tential (see Appendix C), where Hcd takes the form

Hcd = −2β1(t)
[ N∑

i=1

hx
i hz

i σ
y
i +

∑
(m,n)∈G2q

Jmn

(
hx

mσ
y
mσ

z
n + hx

nσ
z
mσ

y
n

)
+

∑
(p,q,r)∈G3q

Kpqr

(
hx

pσ
y
pσ

z
qσ

z
r + hx

qσ
z
pσ

y
qσ

z
r + hx

rσ
z
pσ

z
qσ

y
r

)]
,

(6)

with the analytical form of β1(t) provided in Ref. [33]. At
each iteration, the ground state of Hm is prepared as |ψi⟩ =⊗N

i=1 Ry(θi) |0⟩, where θi = tan−1
(

hx
i

hb
i +
√

(hb
i )2+(hx

i )2

)
. Then, the

system evolves in the impulse regime under the time-evolution
operator generated by Hcd, which includes one-, two-, and

three-body terms. This evolution circuit is implemented in the
following order, it begins with all single-qubit gates applied
in parallel, followed by parallel layers of three-body and two-
body interaction terms, and then a swap layer. This sequence
is repeated for n swap layers, with the application of only S 3q
three-body and S 2q two-body terms, c.f. Algorithm 1. This
ordering ensures a compact compilation, and the placement
of three-body terms before two-body terms is deliberate, as
subsequent swap operations can further simplify the circuit
by canceling redundant gates. Next, we measure nshots times
in the computational basis. From the resulting distribution,
the nCVaR lowest-energy states are selected, analogous to the
conditional-value-at-risk (CVaR) strategy [19, 33, 47]. The
corresponding hb

i values associated with this reduced state are
then used to update Hm and Hcd. This iterative procedure is
repeated for niter iterations.

Additionally, we incorporate classical pre- and post-
processing steps to further enhance both the bias initialization
and the obtained solution quality. The pre-processing step
consists of executing SA with a low number of sweeps and
runs. Then, the lowest energy bitstring is used to initialize the
bias fields. On the other hand, we employ zero-temperature
SA with npost

sweep on the reduced states as post-processing, where
each sweep involves flipping individual bits and accepting the
change only if it leads to a lower energy. This post-processing
step serves to recover information potentially lost due to ran-
dom bitflip errors during experimentation, thereby enhancing
the overall solution quality and robustness. The entire BF-
DCQO algorithm is summarized in Figure 4.

The total runtime for BF-DCQO, including both classical
and quantum resources, is computed as TBF−DCQO = TCPU +

TQPU, where TCPU =
[
npre

sweepnruns + nCVaR(niter+1)npost
sweep

]
0.6 ·

10−5 s and TQPU = (niter+1)nshots · 10−4 s, respectively. Here
the term npre

sweep nruns accounts for the classical pre-processing,
while nCVaR (niter+1) npost

sweep for the post-processing. For the
quantum runtime, we assume a shot rate of 104 shots per sec-
ond, which corresponds to the repetition rate configured on
the quantum hardware. Note that circuit compilation time is
excluded, since all the instances are built on heavy-hexagonal
lattice with fixed S 2q and S 3q values. Hence, the circuits can
be parameterized and pre-compiled.

IV. EXPERIMENTAL RESULTS

In this section, we present and analyze the performance of
BF-DCQO in comparison to SA and CPLEX, demonstrating
how BF-DCQO can achieve better approximate solutions ex-
perimentally for certain problem instances. We employ time-
to-approximate solution (TTR) as a performance metric, de-
fined as the time required to reach a solution that has approx-
imation ratio R to the optimum. This time is measured in sec-
onds and takes into account the algorithmic resources as well
as their physical times. For BF-DCQO, we fix the algorithmic
parameters to make a consistent and systematic performance
benchmark.

The experiments were performed on the 156-qubit IBM
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FIG. 4. Workflow of the BF-DCQO algorithm. (a) A HUBO problem is generated as a hypergraph following the method described in Sec. II A.
Then, they are mapped to an Ising Hamiltonian Hp whose ground state encodes the solution. (b) Pre-processing: SA with a fixed number of
sweeps npre

sweep is then applied to reach a regime where classical approximation becomes difficult. (c) BF-DCQO: The lowest-energy bitstrings
from SA are used to initialize the bias fields. Then, the DCQO circuit is constructed using the first-order approximate adiabatic gauge potential
A(1)
λ , implemented as a single Trotter step (ntrot = 1). Single-qubit gates are executed in parallel, followed by parallelized three- and two-body

terms, and a swap layer. This structure is repeated for n swap layers. A dynamical decoupling sequence (shown by red and blue pulses) is also
applied to mitigate errors from idling qubits. The circuit is then transpiled into hardware-native gates. Finally, measurements are taken in the
computational basis. (d) Post-processing: From the sampled bitstrings, the nCVaR lowest-energy states are selected (red), and zero-temperature
simulated annealing with npost

sweep sweeps is applied, producing an improved distribution (blue). Bias fields are then computed from this refined
distribution, a new mixer Hamiltonian Hm is constructed, and its ground state is prepared for the next iteration. This process is repeated for
niter iterations until a high-quality approximate solution is obtained.

Marrakesh quantum processor, accessed via cloud using
Qiskit [48]. The BF-DCQO circuits were transpiled us-
ing the Qiskit transpiler with optimization level 3 into the
hardware-native gate set {CZ,Rz(θ),

√
X, X}, where CZ =

diag(1, 1, 1,−1) and Rz(θ) = exp(−iθσz/2). Additionally, we
utilized fractional gates [49] that are natively supported on
IBM’s Heron QPUs whenever possible. Specifically, Rzz(θ) =
exp(−iθσz

0σ
z
1/2) for 0 < θ ≤ π/2 and Rx(θ) = exp(−iθσx/2)

gates for arbitrary θ, enabling more efficient implementation
of entangling operations at a reduced circuit depth. Further-
more, we enabled dynamical decoupling with the XpXm pulse
sequence to suppress decoherence effects, setting the schedul-
ing method to as-soon-as-possible (asap) and a slack distribu-
tion strategy centered in the middle of idle windows.

A. Outperforming SA

We compare BF-DCQO and SA on up to five hard
Cauchy-distributed HUBO instances for system sizes N =

100, 130, 156 taken from Figure 2. For the N = 100 qubit in-
stances, we initialize BF-DCQO using the best bitstring from
SA performed with nsweep = 500 and nruns = 100. The mo-
tivation here is to quickly approach the vicinity of the opti-
mal solution using SA and then exploit BF-DCQO to tunnel
through local minima to obtain improved approximate solu-
tions. Since SA is known to perform well at smaller system
sizes, we fix niter = 0 for these instances, effectively using
SA-initialized DCQO with no further bias-field updates. For
classical post-processing, we set nCVaR = 100 and npost

sweep = 10.
Figure 5c shows the approximation ratio R for SA and BF-

DCQO on the best-performing instance on hardware and the
time TTR taken. At N = 100, BF-DCQO achieves a lower
TTR than SA (nsweeps = 1000, nruns = 100) in 0.5 s, whereas
SA took 0.6 s. For the N = 130 and N = 156 qubit instances,

the selected problems are significantly more challenging for
SA. Even with 6 seconds of runtime (nsweep = 10000 and
nreads = 100), SA fails to reach equal solution quality as BF-
DCQO. For these two system sizes, we allow up to niter = 3,
with npre

sweep = 1000 and nruns = 100. This shows BF-DCQO
is able to reach high-quality approximate solutions more effi-
ciently, escaping local minima that hinder classical heuristics.
Check the experimental details in Appendix E.

We assess robustness by selecting the best-performing N =
156 instance with BF-DCQO in terms of R ten times on the
quantum hardware, each time using the same SA-initialized
bitstring. Figure 5d compares the minimum energies from
these BF-DCQO runs to those from SA with 100000 sweeps
(6 s runtime). Remarkably, BF-DCQO achieved a lower en-
ergy in 9 of 10 trials while using less than half the time of SA.
This demonstrates that BF-DCQO is reliable across repeated
experiments.

B. Outperforming CPLEX

We benchmark BF-DCQO against CPLEX on five Pareto-
distributed HUBO instances for N = 80, 100, 130, 156, taken
from Figure 3. BF-DCQO parameters are set to ntrot = 1,
nCVaR = 100, npre

reads = 1 and npost
sweep = 10. For N = 80, we set

npre
sweep = 10 and for N ≥ 100 we use npre

sweep = 100. In Fig-
ure 5a, we show the distribution of TTR. We observe that BF-
DCQO reaches R ≈ 0.95 in just a few seconds, demonstrating
its ability to deliver high-quality approximate solutions. To
compare with CPLEX, we first run BF-DCQO to achieve a
certainR values, then we run CPLEX to check how much time
it takes to Besides, the gap between BF-DCQO and CPLEX
widens with increasing system size. This gap arises because
CPLEX must reformulate HUBO as mixed-integer programs,
adding variables and constraints, which makes its inherent
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(c) TTR for CPLEX and BF-DCQO as a function of the number of qubits N, ranging from N = 80 to N = 156. Solid lines represent the mean
TTR across 5 problem instances for each N. TTR for CPLEX denotes the time taken to reach the minimum energy obtained by BF-DCQO. (d)
Approximation ratio R as a function of time for the best-performing instance with N = 156 qubits, comparing CPLEX and BF-DCQO. The red
line shows the R obtained by CPLEX over time, with the BF-DCQO energy level indicated by a dashed line. The red line shows the CPLEX
run with the SA-derived solution as initialization. The intersection point highlights the time at which CPLEX first reaches the energy achieved
by BF-DCQO. The inset zooms in on the convergence region between 12 and 20 seconds, illustrating when CPLEX matches the BF-DCQO
energy level.

relaxations ineffective and requires deep exploration in the
search tree to start converging, consequently slowing down
its search. All results use instances with a single-swap layer.
Adding more swap layers would greatly increase CPLEX’s
runtime and push circuit depth for BF-DCQO beyond cur-
rent coherence-time limits, so we focus on this single-swap-
layer regime. We expect that hardware improvements, such as
longer coherence times, lower gate errors, or more qubits will
further boost BF-DCQO’s performance on HUBO problems.

To ensure a fair comparison and to verify that the perfor-
mance advantage arises from the quantum component of the
entire workflow, we ran CPLEX on all considered instances
using the same SA-derived bitstring as a warm start, identi-
cal to the initialization used in BF-DCQO. The correspond-

ing results are detailed in Appendix E. In Figure 5b, we il-
lustrate the evolution of energy over time for both CPLEX
and SA-initialized CPLEX for the best-performing instance
corresponding to N = 156 qubits, where BF-DCQO reaches
its solution in approximately 0.2 seconds. We observe that
the energy obtained by CPLEX initially decreases rapidly but
eventually enters a plateau region. This behavior is likely due
to the internal sub-algorithms of CPLEX becoming trapped
while exploring a subset of solutions, resulting in a stagna-
tion of improvement. Despite this, it takes approximately 17
seconds for CPLEX to reach the energy level achieved by
BF-DCQO. Similarly, SA-initialized CPLEX begins from a
lower energy state, but requires around 14 seconds to reach the
corresponding BF-DCQO solution. This relative inefficiency
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FIG. 6. Comparison of CPLEX and SA performance as a function of
Pareto shape parameter α for N = 156 qubits with S 2q = 1, S 3q = 6,
and n = 1 swap layer. The left axis shows the mean TTS (in seconds)
required by CPLEX to solve 50 randomly generated instances. The
right axis indicates the number of instances for which SA failed to
find the optimal solution after nsweep = 20000 and nruns = 100.

highlights the strength of BF-DCQO, which can traverse the
solution landscape much more efficiently within a shorter run-
time window.

C. Outperforming both SA and CPLEX

Until this point, we analyzed instances that are hard to solve
for either SA or CPLEX. Out of 250 instances, we selected
some of the hardest ones and executed BF-DCQO on IBM
hardware. We also observed that the instances that are hard
for CPLEX are easy for SA and vice versa. Here, we extend
the analysis to instances where there is potential to outper-
form both solvers simultaneously. In the previous sections,
the shape parameter for the Pareto distributed instances was
fixed at α = 2 for generating the coefficients of the problem
Hamiltonian Hp. Here, we treat α as a tunable parameter and
vary it from α = 1 to α = 2. As the shape parameter α in-
creases in the Pareto distribution, the tail of the distribution
becomes thinner, reducing the likelihood of extreme values.
For α ≤ 1, the mean is undefined. For 1 < α ≤ 2, the mean
exists but the variance remains infinite. When α > 2, both the
mean and variance are finite, and the distribution concentrates
around lower values. Therefore, increasing α yields a distri-
bution that is less heavy-tailed and more statistically stable.

In Figure 6, we compare the performance of CPLEX and
SA by generating 50 random instances with varying values of
α for a system size of N = 156 qubits, with S 2q = 1, S 3q = 6,
and n = 1 swap layer. For CPLEX (left axis), we plot the mean
TTS in seconds required to solve the problem. For SA (right
axis), we show the number of instances in which SA failed to
find the optimal solution after nsweep = 20000 and nruns = 100.
We observe that as the shape parameter α increases, the mean
TTS values for CPLEX increase from approximately 20 sec-
onds for α = 1 to about 80 seconds for α = 2. This indi-
cates that, for our class of instances, extremely heavy-tailed
distributions are not necessary to construct problems that are

challenging for CPLEX to solve as compared to standard dis-
tributions such as Gaussian, where CPLEX tends to solve the
problems much faster. In contrast, the behavior for SA shows
an opposite trend. As α increases, the number of instances
for which SA reaches the optimal cost at least once decreases
significantly, from around 50 instances at α = 1 to only 10 at
α = 2. This suggests that lower α values, corresponding to
heavier-tailed distributions, generate instances that are more
difficult for SA to solve.

Therefore, this complementary behavior implies that while
lower α values are suited to generating hard instances for SA,
higher α values tend to yield harder instances for CPLEX. By
carefully tuning α, one can generate problem instances that
are simultaneously difficult for both solvers, thus providing a
robust testbed for benchmarking. It is also important to note
that these trends represent mean values; individual instances
may deviate from the average, and in some cases, the hardest
instance for CPLEX may also pose a significant challenge for
SA. This analysis enables better control over instance hard-
ness and increases the likelihood of generating suitably diffi-
cult problems.

To demonstrate a runtime advantage over both CPLEX and
SA simultaneously, we fixed the Pareto shape parameter to
α = 2, as in previous experiments, but selected the hardest in-
stance out of a pool of 250 generated instances. Since this in-
stance is challenging for both SA and CPLEX. We employed
a stronger pre-processing step to move the solution into a re-
gion where SA begins to struggle. For BF-DCQO, we used
npre

sweep = 500, npre
reads = 100, niter = 0 and nshots = 2000, while

keeping all other hyperparameters unchanged from earlier ex-
periments. The implementation was carried out on the IBM
Kingston backend without the use of fractional gates.

In Figure 7a, we compare runtimes of CPLEX using 5,
8, and 10 threads as it converges to the approximation ratio
R achieved by BF-DCQO in TTR = 0.506 s. We observe
that CPLEX requires approximately 34 s with 5 threads, 51 s
with 8 threads, and 31 s with 10 threads to reach this perfor-
mance. We note that increasing the number of threads further
doesn’t decrease the runtime further. To enable a fair compar-
ison, we measured TTR for CPLEX initialized with the same
SA-derived bitstring, and for SA executed with sweep counts
ranging from nsweep ∈ [1000, 10000] and nreads = 100. The
results, summarized in Figure 7b, show the mean R over 10
independent trials for both CPLEX and SA. The black dashed
line indicates the best energy obtained by BF-DCQO, which
was reached in TTR = 0.506 s. In contrast, SA alone required
approximately 4 seconds (corresponding to nsweep = 7000) to
reach the same solution quality, while CPLEX initialized with
SA also needed around 4 seconds on average. It is worth not-
ing that, without the warm start, CPLEX would require sig-
nificantly longer to converge to this solution. These results
present experimental evidence that BF-DCQO can outperform
both tested classical solvers in runtime simultaneously.
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FIG. 7. (a) Approximation ratio (R) as a function of runtime for CPLEX with increasing number of threads from 5 to 10. (b) Approximation
ratio (R) as a function of runtime for SA and warm-started CPLEX, compared with the BF-DCQO solution. The black dashed line indicates
the R value achieved by BF-DCQO in TTR = 0.506 seconds. The SA curve shows the mean R values obtained over 10 trials, each consisting
of nruns = 100 and nsweep ∈ [1000, 10000]. The SA+CPLEX curve represents CPLEX performance when initialized with the same SA-derived
solution used for BF-DCQO.

V. CONCLUSION

In this work, we have given experimental evidence that a
runtime quantum advantage from a quantum algorithm with
respect to specific classical algorithms is possible for approx-
imate solutions of HUBO problems. We have developed a
protocol to generate problem instances that are hard for spe-
cific classical methods, yet feasible on current quantum de-
vices. We have benchmarked the performance of bias-field
digitized counterdiabatic quantum optimization (BF-DCQO)
against both SA and CPLEX, finding cases of runtime ad-
vantage over each classical method under specific conditions.
This was accomplished by generating up to three-body HU-
BOs through systematic application of swap layers and paral-
lel interactions, resulting in densely connected instances com-
patible with the IBM Heron heavy-hexagonal architecture.
The problem instances contain heavy-tailed distributed coef-
ficients, which are challenging for classical solvers. Particu-
larly, we used Cauchy-distributed coefficients to create diffi-
cult instances for SA, while Pareto-distributed coefficients for
CPLEX. Additionally, we found that tuning the α parameter
from the Pareto distribution could result in difficult instances
for both solvers. Leveraging this insight, we generated several
instances with system sizes ranging from N = 80 to N = 156
qubits, many of which required several minutes of CPU time
to be solved to optimality classically. We then applied the
BF-DCQO experimentally and demonstrated that it can reach
approximate solutions significantly faster than tested classi-
cal approaches. For each system size (N = 80, 100, 130,
and 156), we considered experimentally five instances and ob-
served that BF-DCQO can reduce runtimes by up to a factor of
80 compared to CPLEX. Complementary to that, we also ob-
served more than a 3.5× reduction in runtime for BF-DCQO
compared to SA in the best-case scenario.

All experiments were conducted using only a single swap
layer, suggesting that increasing the interaction depth would
make the classical runtimes even longer, potentially reaching

hours or days, which leaves BF-DCQO at a favorable position
to remain comparatively efficient. This study illustrates the
practical utility of current quantum hardware without the need
for quantum error correction. It also provides experimental
evidence for heuristic digital quantum optimization speedups,
pointing toward the possibility of quantum advantage. Ulti-
mately, our results show that contemporary quantum proces-
sors, when paired with advanced algorithms like BF-DCQO,
could be capable of delivering solutions to industrial-scale op-
timization problems.
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Appendix A: HUBO reduction techniques

1. HUBO to MIP

To solve HUBO problems using classical optimization
techniques, we convert them into equivalent mixed-integer
programming (MIP) formulations [50]. The HUBO Hamil-
tonian includes linear, quadratic, and higher-order terms de-
fined over spin variables si ∈ {−1,+1}. These spin variables
are first mapped to binary variables xi ∈ {0, 1} via the substitu-
tion si = 1 − 2xi. The next step is to linearize all higher-order
monomials to obtain a formulation suitable for MIP solvers.

Quadratic terms.—Each quadratic term xix j is replaced by
a binary auxiliary variable ai j that represents the product. To
ensure the equivalence ai j = xix j, the following constraints
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are introduced:

ai j ≤ xi, (A1)
ai j ≤ x j, (A2)
ai j ≥ xi + x j − 1. (A3)

These inequalities enforce that ai j = 1 if and only if both xi
and x j are 1.

Cubic terms.—Cubic terms of the form xix jxk are handled
in two stages. First, an auxiliary variable ai jk is introduced to
encode the product xix j using

ai jk ≤ xi, (A4)
ai jk ≤ x j, (A5)
ai jk ≥ xi + x j − 1. (A6)

Next, a second auxiliary variable bi jk is introduced to repre-
sent the final cubic product via bi jk = ai jk xk, enforced by

bi jk ≤ ai jk, (A7)
bi jk ≤ xk, (A8)
bi jk ≥ ai jk + xk − 1. (A9)

These constraints ensure that bi jk = 1 if and only if all three
variables xi, x j, and xk are equal to 1.

Final MIP formulation.—The final MIP formulation con-
sists of binary variables xi corresponding to each original spin
variable in the HUBO, one auxiliary variable, and three linear
constraints for each quadratic term, and two auxiliary vari-
ables and six linear constraints for each cubic term. The ob-
jective function is expressed as a linear function involving the
constant offset, linear contributions from the xi variables, and
terms arising from the auxiliary variables corresponding to the
quadratic and cubic interactions. This fully linearized binary
MIP model can then be optimized using standard solvers such
as CPLEX or Gurobi.

Warm-starting CPLEX.—Since there is a pre-processing
step for BF-DCQO, we also provide the MIP solver with
the same initial solution, commonly known as a warm start.
This approach can be particularly effective for MIP problems,
where the search space is combinatorially large and early
guidance can significantly influence solver efficiency. A warm
start consists of supplying the solver with a candidate solution
that satisfies all model constraints, enabling it to initiate the
optimization from a known feasible point rather than relying
entirely on internal heuristics.

In our implementation, the warm-start solution is generated
from a minimal SA algorithm. This bitstring is interpreted
as an assignment of binary values to the decision variables
in the MIP model. Once verified for feasibility, the bitstring
is submitted to the solver prior to the optimization phase. If
accepted, it serves as the starting point for the branch-and-
bound procedure, potentially establishing an incumbent solu-
tion early in the search process and reducing the number of
subproblems explored. This warm-start strategy not only en-
hances convergence but also serves as a valuable reference for
evaluating solver progress and measuring the quality of inter-
mediate solutions throughout the optimization.
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FIG. 8. Pairs (variables, constraints) from CPLEX as a function of
the number of sets (S 2q, S 3q) with n = 1 for a N = 156 qubits heavy-
hexagonal lattice.

Appendix B: Instances

1. Pareto distributed instances

In Figure 8, we present the number of variables and con-
straints as a function of S 2q and S 3q, which result after lin-
earizing the HUBO problem, so it has a suitable formulation
for CPLEX, for n = 1 swap layer and N = 156 qubits. Clearly,
the number of variables and constraints depends on the num-
ber of sets considered, which is a consequence of the lineariza-
tion of the problem. With the instance generator from Algo-
rithm. 1, we can reach up to approximately 1500 variables and
4000 constraints using just a single swap layer. This reaffirms
the robustness of the strategy in generating denser and com-
plex problem instances while remaining hardware-efficient.

Additionally, we note that both the number of variables and
constraints tend to saturate as the number of interaction terms
increases. This behavior can be attributed to the fact that
while three-body terms significantly contribute to the growth
in both variables and constraints, the variables introduced by
two-body terms largely constitute a subset of those already
required by higher-order terms. Consequently, beyond a cer-
tain threshold, the total number of variables remains relatively
stable, even as the number of interactions continues to grow.

In Figure 9, we present the maximum total time-to-solution
(TTS) observed among 250 instances, where the coupling co-
efficients were generated using the Pareto distribution with
α = 2, and extreme values were constrained within the range
[−7, 7]. We observe that the TTS obtained from CPLEX in-
creases significantly from around 0.1 s to around 150 s as the
number of three-body terms increases. This trend can be at-
tributed to the fact that, in CPLEX, an increase in the number
of three-body terms results in a corresponding rise in the num-
ber of variables, thereby increasing the computational com-
plexity and making the problem more challenging to solve.
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FIG. 9. TTS for CPLEX as a function of the two-body and three-
body terms for N = 156 qubits n = 1 swap layer and threads=1.
The data shows the longest time among 250 instances drawn from
a Pareto distribution with α = 2, and the coefficients were limited
between -7 and 7.

Apart from this, the TTS follows a similar trend as observed
in Figure 11; as the number of three-body terms increases, the
TTS also increases. However, for a fixed number of three-
body terms, reducing the number of two-body terms leads to
higher TTS values. Therefore, for our analysis comparing BF-
DCQO and CPLEX, we fix S 2q = 1 and S 3q = 6. This choice
ensures that experimental circuit depths with BF-DCQO re-
main within typical coherence times without compromising
the inherent difficulty of the problem instances. It is also
worthwhile to note that the runtime of the CPLEX solver de-
pends on the specifications of the classical hardware, includ-
ing factors such as clock speed, CPU architecture, number of
cores, and available threads.

Similarly, in Figure 10, we display the average TTS for the
same set of instances. A substantial decrease from the maxi-
mum TTS values to the mean TTS values is observed, indicat-
ing that even within a distribution that poses significant chal-
lenges for CPLEX, there exists a wide variation in problem
hardness across individual instances. This variation suggests
that certain subsets of instances may be selectively targeted
for quantum approaches, potentially increasing the likelihood
of achieving a better performance.

2. Cauchy distributed instances

In Figure 11, we consider 250 randomly generated in-
stances and report the number of instances that achieve R ∈
[0.99, 1] using nsweep = 20000 and nreads = 100. We observe
that, for a given combination of S 2q and S 3q, a large number of
instances reach at least R = 0.99; however, this number drops
significantly as we approach the R = 1 threshold. This be-
havior suggests the presence of numerous local minima near
the global optimum, making it increasingly difficult for SA to
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FIG. 10. TTS for CPLEX as a function of the two-body and three-
body terms for N = 156 qubits n = 1 swap layer and threads=1. The
data shows the mean time among 250 instances drawn from a Pareto
distribution with α = 2 and the coefficients were limited between -7
and 7.
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FIG. 11. Number of instances where SA is within a specific R
value. Considering S 2q ∈ [1, 3] and S 3q ∈ [4, 6] on a 156-qubit
heavy-hexagonal lattice, we create 250 random instances for each
pair (S 2q, S 3q), with coefficients drawn from a Cauchy distribution
with extreme values in the range [−7, 7]. We show four colored ta-
bles corresponding to a R of (a) 0.99, (b) 0.995, (c) 0.999, and (d) 1.

escape these traps and reach the true ground state. We ob-
serve that lower values of S 2q, corresponding to fewer two-
body terms relative to three-body terms, tend to increase the
problem’s difficulty. This indicates that the presence of three-
body interactions plays a more dominant role in determining
the hardness of the instance compared to two-body terms. Ad-
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ditionally, once S 2q is fixed, increasing S 3q beyond a certain
point does not significantly impact performance.

Appendix C: Digitized-counterdiabatic quantum computing

We utilize DCQO [31], a paradigm developed to efficiently
reach the ground state of a target Hamiltonian by incorporat-
ing CD protocols. In this approach, the system evolves under
a time-dependent Hamiltonian given by

Hcd(t) = [1 − λ(t)]Hm + λ(t)Hp︸                      ︷︷                      ︸
Had(λ)

+λ̇(t)A(k)
λ , (C1)

where Had(λ) denotes the standard adiabatic Hamiltonian in-
terpolating between the initial Hamiltonian Hm and the prob-
lem Hamiltonian Hp through a scheduling function λ(t). In
conventional adiabatic quantum computing, λ(t) varies slowly
to ensure that the system remains in its instantaneous ground
state throughout the evolution. However, to overcome the
limitations imposed by this slow-driving requirement, DCQO
introduces a velocity-dependent counterdiabatic term λ̇(t)Ak

λ,
where A(k)

λ represents a k-order approximation to the adiabatic
gauge potential (AGP).

The approximate AGP takes the form A(k)
λ = i

∑
k βkO2k−1,

where each operator Ok is recursively defined as Ok =

Lk∂λHad(λ), with L(◦) = [Had, ◦] denoting the Liouvillian
super-operator. The coefficients βk(t) can be determined us-
ing methods such as action minimization [51, 52] or Krylov
subspace techniques [53, 54].

Starting from the ground state of Hm, the system can un-
dergo a digitized evolution composed of ntrot Trotter steps.
This evolution is approximated by a product of unitary op-
erators of the form U( j) = exp {−iHcd( j∆t)∆t}, where ∆t is
the step size. The full time evolution from t = 0 to t = T is
then constructed as U(0,T ) =

∏ntrot
j=1 U( j), where ntrot denotes

the total number of Trotter steps. Due to the presence of the
counterdiabatic term A(k)

λ in the Hamiltonian Hcd(t), this digi-
tized evolution enables an evolution compared to standard adi-
abatic evolution. As a result, the system can reach the ground
state of Hp more efficiently, with significantly reduced circuit
depths, making the protocol more suitable for implementa-
tion on quantum hardware [31, 55]. Recently, it was demon-
strated that circuit depth can be further reduced in the impulse
regime, where |αk(t)λ̇(t)| ≫ |λ(t)| [56, 57]. In this limit, the
contributions from Had(λ) can be neglected, as the CD term
predominantly governs the system’s dynamics [58].

Appendix D: Runtime calculations

Before analyzing the performance of SA, we first estimate
the time per sweep Tsweep, using the CPU specifications listed
in Table I. To this end, we executed SA for a random N = 156
qubit instance, with an increasing number of sweeps ranging
from 104 to 107, with 100 runs each. The average runtime Tavg
required to obtain the output was recorded and is presented in
Figure 12.
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FIG. 12. Mean times as a function of number of sweeps for SA for a
random N = 156 qubit instance with S 2q = 1 and S 3q = 6. The plot
depicts mean times of 100 runs with 104, 105, 106, and 107 sweeps.

A linear fit of the form Tavg = Tsweep nsweep + Toffset was
performed, yielding a time per sweep of Tsweep ≈ 0.6 · 10−5 s.
Additionally, we observed an offset time of Toffset ≈ 1.65 s,
which can be attributed to initialization overheads such as
solver setup and memory allocation. Henceforth, we fix the
sweep time to Tsweep for calculating the CPU runtimes associ-
ated with SA, as well as for estimating the classical pre- and
post-processing time in the BF-DCQO pipeline.

Appendix E: Experimental results

Outperforming SA.—In Table II we compare the perfor-
mance of BF-DCQO against SA using instances generated
with a single swap layer (n = 1), S 2q = 1, and S 3q = 4.
The coupling coefficients were sampled from a Cauchy dis-
tribution, as described previously. Hard instances were se-
lected based on the energy gap between the optimal cost and
the minimum energy obtained via SA with nsweep = 20000
and nruns = 100. As discussed earlier, SA tends to reach so-
lutions that are approximately 99% close to optimal relatively
quickly, but requires significantly more time to converge to
the exact solution.

Outperforming CPLEX.—The experimental results com-
paring CPLEX and BF-DCQO are presented in Table III. For
N = 80 qubits, all five instances, the initial SA pre-processing
step was configured npre

sweep = 10 sweeps and a single run,
given that the average runtime for CPLEX is approximately
13 seconds. Here, niter = 0 corresponds to SA-initialized
DCQO without any bias field updates, while niter = 1, 2, . . .
denote subsequent iterations with updated bias fields. All re-
ported times are in seconds. The column labeled “Optimal
Cost” indicates the minimum energy obtained by CPLEX,
with the corresponding provable optimality runtime shown
in the column “TTS (CPLEX)”. The column “BF-DCQO”
reports the minimum energy achieved using our proposed
algorithm, along with the associated CPU and QPU times.
Additionally, “TTR (CPLEX)” represents the time taken by
CPLEX to reach the same energy level as that obtained by
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TABLE II. Experiments: Performance analysis of BF-DCQO and SA with n = 1, S 2q = 1, S 3q = 4. “SA 10000 (1000)” shows minimum
energy obtained with 100 runs of SA. 0.6 · 10−5 s per sweep CPU time and 104 shots per sec QPU time.

N Instance niter Optimal cost SA 10000 SA 1000 BF-DCQO CPU time QPU time Total time

100 0 0 -109.1738 -109.1738 -107.2830 -107.8784 0.301 0.2 0.501
100 1 0 -103.9619 -102.7143 -101.0449 -99.0469 0.301 0.5 0.801
100 2 0 -110.8313 -109.9482 -109.3494 -109.3201 0.301 0.5 0.801
100 3 0 -89.1511 -87.8355 -86.8249 -86.4880 0.801 0.2 0.801

130 0 2 -115.9914 -115.3305 -114.1877 -115.1009 0.308 6.0 6.308
130 1 2 -161.4084 -161.4084 -158.9392 -159.5753 0.318 1.2 1.518
130 2 2 -129.5597 -128.4072 -128.1709 -127.7192 0.318 1.2 1.518
130 3 2 -140.5795 -140.4566 -138.6439 -139.0727 0.318 1.2 1.518
130 4 3 -135.6783 -134.6596 -134.0120 -135.1691 0.174 2.2 2.374

156 0 1 -191.1775 -188.3061 -183.9224 -188.5845 0.612 0.7 1.311
156 1 1 -157.9815 -156.0199 -153.6049 -154.4282 0.072 0.7 0.772
156 2 1 -182.1461 -178.8977 -178.4260 -178.1232 0.072 1.2 1.272
156 3 1 -165.6203 -164.5468 -162.2066 -163.2233 0.132 1.2 1.331
156 4 2 -161.2242 -159.4274 -158.2813 -157.6393 0.318 1.2 1.518

TABLE III. Experiments: Performance analysis of BF-DCQO and CPLEX with n = 1, S 2q = 1, S 3q = 6. “TTR (BF-DCQO)” is total BF-
DCQO wall time (CPU + QPU). “TTR (CPLEX)” is time-to-solution for CPLEX. 0.6 · 10−5 s per sweep CPU time and 104 shots per sec QPU
time.

N Instance niter Optimal cost TTS (CPLEX) BF-DCQO CPU time QPU time TTR (BF-DCQO) TTR (CPLEX) Enhancement Factor

80 0 2 -215.4481 16.1915 -201.6557 0.0180 1.2 1.218 4.5 3.694
80 1 1 -222.2756 15.0387 -207.7738 0.0120 0.7 0.712 4.5 6.318
80 2 1 -216.3627 13.7088 -202.9397 0.0120 0.7 0.712 4.5 6.318
80 3 3 -227.9471 12.1781 -221.7880 0.0241 2.2 2.224 7.5 3.372
80 4 3 -230.1366 12.0960 -226.2100 0.0241 2.2 2.224 4.5 2.023

100 0 2 -265.7944 57.9967 -257.3076 0.0186 1.2 1.219 9.0 7.387
100 1 2 -282.9621 52.8523 -273.7422 0.0186 1.2 1.219 6.5 5.334
100 2 0 -281.6533 51.4635 -271.1121 0.0060 0.2 0.207 10.0 48.396
100 3 2 -253.2525 46.6339 -244.1057 0.0186 1.2 1.219 6.5 5.335
100 4 3 -266.9979 46.2196 -258.0769 0.0246 2.2 2.225 6.0 2.697

130 0 2 -364.1344 130.0527 -344.8771 0.0186 1.2 1.218 12.0 9.852
130 1 1 -355.1786 100.1148 -343.9632 0.0126 0.7 0.712 12.5 17.556
130 2 3 -379.2107 99.2038 -370.7371 0.0246 2.2 2.224 17.5 7.867
130 3 3 -377.8902 97.1254 -345.3099 0.0126 2.2 2.224 4.5 2.023
130 4 1 -368.7392 103.3247 -354.8130 0.0126 0.7 0.712 15.5 21.765

156 0 0 -472.5398 241.25 -454.0458 0.0066 0.2 0.207 17.5 84.729
156 1 3 -465.7531 198.42 -425.5693 0.0246 1.7 1.725 8.0 4.639
156 2 3 -464.0377 125.67 -443.7394 0.0246 1.7 1.725 8.5 4.930
156 3 2 -466.9106 122.37 -444.0443 0.0186 1.2 1.219 19.0 15.595
156 4 1 -439.4456 123.34 -406.6555 0.0126 0.7 0.713 16.0 22.448

BF-DCQO (or lower), where CPLEX solutions are sampled
every 0.5 seconds. Enhancement factor denotes the ratio be-
tween the TTR from CPLEX and BF-DCQO.

It can be observed that for all considered instances with
N = 80 qubits, TTR for BF-DCQO is substantially lower than
that of CPLEX. In particular, for some instances, BF-DCQO
achieves approximately a six-fold reduction in total runtime
compared to CPLEX. It is important to note that, in these run-
time calculations, we exclude the Qiskit transpilation times.
Furthermore, since CPLEX is a deterministic exact solver and
BF-DCQO is inherently probabilistic, we compare only the
minimum energy obtained by each method within a given run-
time window to ensure a fair comparison.

For N = 100, N = 130, and N = 156 qubits, these in-

stances, the SA pre-processing step was configured with 100
sweeps and a single run, consistent with the earlier setup.
We observe performance trends similar to the N = 80 case,
with BF-DCQO consistently outperforming CPLEX in terms
of TTR. Notably, for certain instances, we find that even
at niter = 0, the algorithm yields competitive results. This
highlights the robustness of the BF-DCQO approach, further
enhanced through the integration of classical pre- and post-
processing steps.

In Table IV, we observe that even when CPLEX is warm-
started with the same bitstring, BF-DCQO continues to
demonstrate a comparable performance advantage in most
cases. Interestingly, for certain instances, the warm-started
CPLEX exhibits even longer runtimes compared to stan-
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TABLE IV. Experiments: Performance analysis of BF-DCQO and CPLEX for varying N values with n = 1, S 2q = 1, S 3q = 6, 0.6 · 10−5 s per
sweep CPU time and 104 shots per sec QPU time.

N Instance TTS (CPLEX) TTR (BF-DCQO) TTR (CPLEX) TTR (SA + CPLEX)

0 16.19 1.218 4.5 5.5
1 15.03 0.712 4.5 4.5

80 2 13.70 0.712 4.5 4.0
3 12.17 2.224 7.5 6.0
4 12.09 2.224 4.5 7.5

0 57.99 1.2186 9.0 7.0
1 52.85 1.2186 6.5 8.0

100 2 51.46 0.2066 10.0 1.0
3 46.63 1.2186 6.5 7.5
4 46.21 2.2246 6.0 10.0

0 130.05 1.218 12.0 16.5
1 100.11 0.712 12.5 6.5

130 2 99.20 2.224 17.5 14.0
3 97.12 2.224 4.5 0.5
4 103.32 0.712 15.5 15.5

0 241.25 0.2066 17.5 14.0
1 198.42 1.7246 8.0 13.5

156 2 125.67 1.7246 8.5 9.5
3 122.37 1.2186 19.0 9.5
4 123.34 0.7125 16.0 17.0

dard CPLEX runs without initialization. This behavior in-
dicates that the quantum component of BF-DCQO plays a
dominant role in driving the observed performance improve-
ments. However, in one specific instance for N = 130 qubits,

the warm-started CPLEX outperforms BF-DCQO. Neverthe-
less, on average, BF-DCQO consistently outperforms CPLEX
across all instances considered, reinforcing its effectiveness in
solving challenging HUBO problems.
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